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Recently developed nuclear many-body techniques provide novel results when applied to constituent quark

models and to light-front scalar field theory. We show how spontaneous symmetry breaking arises and is consistent

with a coherent state ansatz in a variational treatment. The kink and the kink-antikink topological features are

identified and the onset of symmetry restoration is demonstrated.

1. Introduction

The light-front quantized Hamiltonian ap-
proach to quantum field theory has a long his-
tory. Throughout that time, Ken Wilson has
been the most outspoken concerning the need
to adopt successful non-relativistic microscopic
many-body approaches to solve field theories non-
perturbatively on the light-front [1]. Here, we
outline our efforts in that direction where we cap-
italize on recent advances in solving the ab-initio
nuclear many-body problem. En route to the
full quantum field theory, we solve a constituent

quark model with the full treatment of color and
multiple Fermions using an equal-time quantiza-
tion approach. We begin with a review of the re-
cently developed nuclear many-body techniques
and proceed to the applications mentioned.

2. Ab initio theory of nuclear structure

In the nuclear ab initio No-Core Shell Model
(NCSM), we define an intrinsic “bare” Hamilto-
nian to include a realistic nucleon-nucleon (NN)
interaction and a tri-nucleon (NNN) interaction.
The NN interaction describes the NN data to
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high precision. These interactions may arise from
any theoretical framework (meson exchange, ef-
fective field theory, chiral field theory, inverse
scattering,...) and may have complicated features
such as charge-symmetry breaking, non-locality,
and strong repulsive behavior at short distances,
among others. The NNN terms have additional
parameters usually tuned to fit the properties of
A = 3 nuclei. The complexity of these Hamilto-
nians can easily rival that of light-front QCD in
the Fermion sector.

In order to accommodate strong nuclear
short-distance correlations (which generate high-
momentum components), we introduce an effec-
tive Hamiltonian approach in which a 2-body or
3-body cluster subsystem of the full A-body prob-
lem is solved exactly. From the exact solutions of
the cluster subsystem, an effective Hamiltonian is
evaluated and solved exactly [2] in a basis space
appropriate to the chosen (no-core) A-body ap-
plication.

The method involves a similarity transforma-
tion of the “bare” Hamiltonian to derive this ef-
fective Hamiltonian for a specified finite model
space [3]. The A-body eigensolutions respect the
symmetries of the underlying NN and NNN in-
teractions. Diagonalization and the evaluation of
observables from effective operators created with
the same transformations are carried out on high-
performance parallel computers.

For pedagogical purposes, we outline the ab ini-

tio NCSM approach with NN interactions alone
and point the reader to the literature for the ex-
tensions to include NNN interactions. We begin
with the purely intrinsic Hamiltonian for the A-
nucleon system, i.e.,

HA = Trel + V (1)

=
1

A

A
∑

i<j

(~pi − ~pj)
2

2m
+

A
∑

i<j=1

VN(ij) ,

where m is the nucleon mass and VN(ij), the NN
interaction, with both strong and electromagnetic
components. We may use either coordinate-space
or momentum-space potentials.

Next, we add to (2) the center-of-mass Har-
monic Oscillator (HO) Hamiltonian HCM =

TCM + UCM, where UCM = 1
2AmΩ2 ~R2, ~R =

1
A

∑A
i=1 ~ri. At convergence, the added HCM term

has no influence on the intrinsic properties. How-
ever, when we introduce our cluster approxima-
tion below, the added HCM term facilitates con-
vergence to exact results with increasing basis
size. The modified Hamiltonian, with pseudo-
dependence on the HO frequency Ω, can be cast
as:

HΩ
A = HA + HCM =

A
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]

(2)

+

A
∑

i<j=1

[

VN(ij) −
mΩ2

2A
(~ri − ~rj)

2

]

.

We then introduce a unitary transformation,
which is designed to accommodate the short-
range two-body correlations in a nucleus, by
choosing an antihermitian operator S, acting only
on intrinsic coordinates, such that

H = e−SHΩ
AeS . (3)

In our approach, S is determined by the require-
ments that H and HΩ

A have the same symmetries
and eigenspectra over the subspace K of the full
Hilbert space. In general, both S and the trans-
formed Hamiltonian are A-body operators. Our
simplest, non-trivial approximation to H is to de-
velop a two-body (a = 2) effective Hamiltonian,
where the upper bound of the summations “A” is
replaced by “a”, but the coefficients remain un-
changed. We then have an approximation at a
fixed level of clustering, a, with a ≤ A.

H = H(1) + H(a) (4)

=

A
∑

i=1

hi +

(

A
2

)

(

A
a

)(

a
2

)

A
∑

i1<i2<...<ia

Ṽi1i2...ia
,

with

Ṽ12...a = e−S(a)

HΩ
a eS(a)

−

a
∑

i=1

hi , (5)

and S(a) is an a-body operator; HΩ
a = h1 + h2 +

h3 + . . .+ha +Va, and Va =
∑a

i<j Vij . In the nu-
clear applications, we adopt the HO basis states
that are eigenstates of the one-body Hamiltonian
∑A

i=1 hi. In other applications, we can use any
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convenient one-body Hamiltonian and its eigen-
states, usually dictated by the physical system
under investigation. An example would be box-
normalized standing waves that we use in the field
theory application discussed below.

The full Hilbert space is divided into a finite
model space (“P -space”) and a complementary
infinite space (“Q-space”), using the projectors P
and Q with P + Q = 1. We determine the trans-
formation operator Sa from the decoupling condi-

tion Qae
−S(a)

HΩ
a eS(a)

Pa = 0 and the simultane-
ous restrictions PaS(a)Pa = QaS

(a)Qa = 0. The
a-nucleon-state projectors (Pa, Qa) follow from
the definitions of the A-nucleon projectors P , Q.

In the limit a → A, we obtain the exact solu-
tions for dP states of the full problem for any
finite basis space, with flexibility for choice of
physical states subject to certain conditions [4].
This approach has a significant residual freedom
through an arbitrary residual Pa–space unitary
transformation that leaves the a-cluster proper-
ties invariant. Of course, the A-body results are
not invariant under this residual transformation.
We plan to exploit this residual freedom to accel-
erate convergence in practical applications.

The model space, P2, is defined by Nm via the
maximal number of allowed HO quanta of the A-
nucleon basis states, NM, where the sum of the
nucleons’ 2n+l ≤ Nm+Nspsmin = NM, and where
Nspsmin denotes the minimal possible HO quanta
of the spectators. For 10B, NM = 12, Nm = 8 for
a basis where the maximum oscillator excitation
quanta is 6. For shorthand, we refer to this as an
Nmax = 6 or “6h̄Ω” calculation. With our cluster
approximation, a dependence of our results on
Nmax (or equivalently, on Nm or on NM) and on
Ω arises. The residual Nmax and Ω dependences
will infer the uncertainty in our results.

At this stage we also add the term HCM again
with a large positive coefficient (constrained via
Lagrange multiplier) to separate the physically
interesting states with 0s CM motion from those
with excited CM motion. We diagonalize the ef-
fective Hamiltonian with an m-scheme Lanczos
method to obtain the P -space eigenvalues and
eigenvectors. All observables are then evaluated
free of CM motion effects. In principle, all ob-

servables require the same transformation as im-
plemented for the Hamiltonian. We obtain small
renormalization effects on long range operators
such as the rms radius operator and the B(E2)
operator when we transform them to P -space ef-
fective operators at the a = 2 cluster level [2,5].
On the other hand, when a=2, substantial renor-
malization was observed for the kinetic energy
operator [6] and for higher momentum transfer
observables [5].

Recent nuclear physics applications include:

(a) spectra and transition rates in p-shell nu-
clei;

(b) role of NNN potentials from a chiral La-
grangian tied to QCD [7]

(c) comparisons between NCSM and Hartree-
Fock [8];

(d) di-neutron correlations in the 6He halo nu-
cleus [9];

(e) neutrino cross sections on 12C [10];

(f) novel NN interactions using inverse scatter-
ing theory plus NCSM [11];

(g) spectra of 16C and 16O [12];

(h) spectroscopy of the A = 47 – 49 nuclei [13,
14];

(i) statistical properties of nuclei based on
NCSM and approximations thereto [15].

We present an example with a soft and bare NN
interaction, the Minnesota potential [16], which
is a greatly simplified potential useful for test-
ing many-body methods. The ground and first
excited states of 4He as a function of h̄Ω illus-
trate in Fig. 1 convergence with increasing model
space. Flatter and more densely packed curves
signal convergence with increasing Nmax. We also
find convergence for the ground state RMS radius
while the RMS radius of the excited state shows
divergence as one expects for a continuum state.
Results obtained with Heff for this same poten-
tial (not shown) are more rapidly convergent than
the bare H results but the energies do not system-
atically converge from above since the variational
character is absent.
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Figure 1. Ground and first excited states of 4He
with the Minnesota [16] bare interaction in basis
spaces up to Nmax = 14 as a function of HO en-
ergy in MeV. The sequence of curves begins in the
smallest allowed basis space and proceeds system-
atically down towards a flatter (more converged)
result. The horizontal lines represent experiment.

3. Constituent quark model applications

As a prelude to working with QCD itself, we
first consider a phenomenological Hamiltonian for
the qq and qqqq systems [17]. We present in Fig.
2 a constituent quark model mass spectrum for
three light mesons as a function of Nmax/2. The
bare Hamiltonian consists of a potential derived
from a relativistic wave equation treatment moti-
vated by QCD and supplemented with traditional
assumptions of massive constituent quarks [18].
It contains a term resembling one-gluon exchange
and a term with behavior close to linear con-
finement. The effective Hamiltonian treatment
is as described above. At the a = 2 cluster level,
the effective Hamiltonian should provide the ex-
act (convergent) result as demonstrated by the
results in Fig. 2 lying on horizontal lines.

One major goal of this effort is to predict
masses for exotic multiquark systems with suffi-
cient precision to guide experimental searches as
we have demonstrated for all-charm tetraquarks
[17]. For this reason, all the techniques of the

Figure 2. Three low-lying meson masses as a
function of Nmax/2. Both the bare Hamiltonian
(points following curved trajectories) and the
effective Hamiltonian (points following straight
lines) are solved in an oscillator basis.

ab initio NCSM are needed, including the effec-
tive Hamiltonian treatment, as seen by the slow
convergence of the bare Hamiltonian mass spectra
with increasing basis size. Note that the inclusion
of the flavor degree of freedom here is analogous
to our isospin treatment in the case of nucleons.
However, the introduction of color represents a
major additional degree of freedom as we seek to
predict global color singlet states which are an-
tisymmetric under that exchange of color, and
which lie below breakup thresholds into known
mesons and baryons.

4. Scalar field theory - spontaneous sym-

metry breaking

We discuss here selected recent results obtained
with these techniques applied to light-front quan-
tized scalar field theory in 1 + 1 dimensions [19–
21]. For this application, we did not need to
invoke the full effective Hamiltonian apparatus
since it proved sufficient to work with the bare
Hamiltonian for our physics goals.

Let us provide a short synopsis of this applica-
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tion and the results of three investigations for con-
venience. Using the Discrete Light Cone Quan-
tization (DLCQ) Hamiltonian (box normalized
plane wave basis with both periodic (PBC) [20]
and anti periodic boundary condition (APBC))
[19,21] we investigated non-trivial topological
structures through the example of the broken
symmetry phase of the two dimensional φ4 the-
ory. Upon diagonalizing the bare Hamiltonian as
a function of increasing basis size, we found clear
evidence for degenerate ground states which is
both a signature of spontaneous symmetry break-
ing and mandatory for the existence of kinks.
Next, guided by a constrained variational cal-
culation with a coherent state ansatz, we ex-
tracted the vacuum energy density and kink mass
and compared with classical and semi - classi-
cal results. We then compared the DLCQ re-
sults for the number density of bosons in the kink
state(APBC) and kink-antikink state (PBC) and
obtain good agreements. Finally, we evaluated
the Fourier transform of the form factor of the
kink and kink-antikink and compared with the
same quantity in the corresponding constrained
coherent variational state and we again obtain
good agreement.

Now, let us review some details of the calcu-
lations and the results. Our basis is defined by
arranging massive bosons in single particle plane
wave states with light front momentum p+ = 2πn

L

where L is the the box length and n is a half-odd
integer. The many-boson states consist of all pos-
sible configurations consistent with a total light-
front momentum P+ = 2πK

L
for a chosen value

of K. Boson number is not conserved. The even
and odd particle number sectors do not mix and
the signal for spontaneous symmetry breaking is
the degeneracy of their lowest mass eigenstates.
We show in Fig. 3 the lowest four Hamiltonian
eigenvalues as a function of 1/K in order to ex-
trapolate easily to the continuum limit K → ∞.
Dimensions of the matrices exceed 106.

With increasing K, the finite dimensional ar-
tifacts damp out. Degeneracy of the even and
odd sectors with APBC is demonstrated by com-
mon trajectories of their eigenvalues and this is
shown by the straight line fits in Fig. 3 (in-
set). Thus, the evidence for spontaneous symme-
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Figure 3. Lowest four eigenvalues for even and
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inset shows the details over the range 40 ≤ K ≤
55. The discrete points are the DLCQ eigenvalues
while the straight lines are the linear fits to the
40 ≤ K ≤ 55 data constrained to have the same
intercept.
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try breaking is demonstrated in this theory by our
detailed non-perturbative solutions of the light-
front quantized Hamiltonian problem.

Following Rozowski and Thorn [23] who carried
out an analysis with coherent states and periodic
boundary condition (PBC), we evaluate the vari-
ational result for the coherent state with APBC.
In addition, we include a constraint to restrict
the total light front momentum, on average, to
be K. This analysis provides a viewpoint for our
numerical results which is remarkably accurate.
Using this coherent state analysis, we can follow
the trends of our results as shown in Fig. 3 to
extract the vacuum energy density and the kink
mass. The fits are extrapolated to K → ∞ for the
kink mass (from the slope of the lowest state) and
the vacuum energy density (common intercept).
Results from this analysis are presented in Ta-
ble 1 and provide predictions differing from those
of semi-classical analyses by 10% or less over the
range of coupling investigated. It would be useful
to have lattice results for comparison.

λ vacuum energy soliton mass
CL DLCQ CL SCL DLCQ

0.5 -37.70 -37.81(7) 11.31 10.84 11.6(2)
1.0 -18.85 -18.71(5) 5.66 5.19 5.22(8)
1.25 -15.08 -14.91(5) 4.53 4.05 4.07(6)

Table 1
Comparison of vacuum energy density and soliton
mass extracted from the continuum limit of our
APBC DLCQ data, with classical (CL) results
and, for soliton mass, the semi-classical (SCL) re-
sult [24].

Next, we compute the Fourier transform of the
form factor of the lowest state which represents
the kink profile[25] in the weak coupling limit. In
the continuum theory,

∫ +∞

−∞

dq+exp{−
i

2
q+a}〈K ′ | Φ(x−) | K〉 (6)

= φc(x
− − a).

We need the same state at different K val-
ues since K ′ = K + q. Thus, for exam-
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Figure 5. Fourier Transform of the kink form
factor at λ=5, K = 32. The figure legend indi-
cates the number of adjoining momentum transfer
terms (sets) included in the summation.

ple, we diagonalize the Hamiltonian, say, at
K = 41 in the even particle sector and at K =
40.5, 41.5, 39.5, 42.5, 38.5, 43.5, 37.5, 44.5, 36.5, 45.5
in the odd particle sector. Thus, dimensionless
momentum transfer ranges from −4.5 to +4.5.

In Fig. 4 we display comparisons of our kink
solutions (solid curves) with those from the con-
strained coherent state variational calculation.
The agreement is very good.

When we examine the kink solution as a func-
tion of increasing coupling (λ), we find evidence
for the transition to a kink-antikink-kink state.
This is seen for example, in the Fourier transform
of the form factor for λ = 5 at K = 32 shown in
Fig. 5. We expect that as we increase K, the
steps will sharpen. Associated with this transi-
tion in the topology, the entire spectrum changes
and other observables are strongly affected. The
totality of changes with increased coupling indi-
cates the onset of kink-condensation [21].

5. Outlook

Given the rapid progress in solving Fermionic
and Bosonic systems in light-front quantized field
theory, it is natural to look forward to the appli-
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cation of this non-perturbative approach to full
QCD. The initial questions are the choice of basis
functions and whether a renormalization program
can be developed that manages the singularities
that arise. We have made a promising start in this
direction [22] that encourages us to forge ahead.
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